

Welcome to webhelpers2_grid’s documentation!

HTML Grid system that helps generating HTML tables (or other structures) for data presentation, supports ordering,
sorting columns, and has customizable looks.

DOCUMENTATION: http://readthedocs.org/docs/webhelpers2_grid/en/latest/

DEMOS: http://ergo.github.io/webhelpers2_grid/gh-pages/ (static page)

BUG TRACKER: https://github.com/ergo/webhelpers2_grid

Contents:

	Basic Usage
	What grid is about?

	Basic Example

	Item number column

	Basic template output

	Customizing column names

	Fetching the data from row/Customizing column cell markup

	Controlling which columns allow sorting the data

	Working with other item types

	Order markers

	Customizing row markup

	API

Indices and tables

	Index

	Module Index

	Search Page

Basic Usage

What grid is about?

This class is designed to aid programmer in the task of creation of
tables/grids - structures that are mostly built from lists/iterables of data rows.

The system allows you to hook your favourite framework and datasource and
generate markup from it.

Supported features:

	auto generated headers

	headers allow you to generate clikable links for data ordering based on columns

	support for auto numbering resultset in separate columns

	header name auto generation

	extensive customizability

	framework agnostic solution

	works with iterables of objects/dictionaries/tuples

	default generated markup contains lots of css handy for styling

Basic Example

Creating a basic grid object:

To create a grid at minimum one one needs to pass a dataset,
like an iterable of objects or dictionaries:

grid = Grid(itemlist, [‘c1’, ‘c2’,’c4’])

where itemlist in this simple scenario is a list of dicts:

[{‘c1’:1,’c2’…}, {‘c1’…}, …]

This helper also received the list that defines order in which
columns will be rendered.

Item number column

A special column name that can be passed in list that defines
order - _numbered - this adds additional column that shows the number of item:

 g = Grid(test_data, columns=["_numbered", "group_name", "options"], start_number=10)

For paging sql data there one can pass
start_number argument to the grid to define where to start counting.
Descendant sorting on _numbered column decrements the value, you can
change how numbering function behaves by overloading calc_row_no
property.

Resulting rendering:

[image: _images/basic_grid.png]

Basic template output

Converting the grid to a string renders the table rows. By default that’s just
the <tr> tags, not the <table> around them. The part outside the <tr>s
have too many variations for us to render it. In many template systems (like jinja2/mako,
you can simply assign the grid to a template variable and it will be
automatically converted to a string. Example using a Jinja2 template:

<table class="stylized">
<caption>My Lovely Grid</caption>
{{ grid }}
</table>

Customizing column names

The names of the columns will get automatically converted for
humans ie. foo_bar becomes Foo Bar. If you want the title to be something
else you can change the grid.labels dict. If you want the column part_no
to become Catalogue Number just do:

grid = Grid(itemlist, ['_numbered','part_name', 'part_no'])
grid.labels["part_no"] = u'Catalogue Number'

You can also control all aspects of grid rendering/behavior by creating your own subclasses of Grid.

Fetching the data from row/Customizing column cell markup

Since various programmers have different needs, Grid is highly customizable.
By default grid attempts to read the value from object attributes (getattr(record, column))
if this fails there will be an attempt to read it via record.get(column), if this fails
None value will be used instead.
For every column it will try to output value of current_row[‘colname’].

Since very often this behavior needs to be overridden like we need date
formatted, use conditionals or generate a link one can use
the column_formats dict and pass a rendering function to it.
For example we want to apppend foo to part number:

 class CustomGrid(Grid):
 def __init__(self, *args, **kwargs):
 super(CustomGrid, self).__init__(*args, **kwargs)
 self.labels["options"] = "Custom label"
 self.column_formats["options"] = self.options_td

 def options_td(self, col_num, i, item):
 u = url(
 "/tickets/view", ticket_id=item.id, y=self.additional_kw["context"]["y"]
)
 a = link_to(item.options, u)
 return HTML.td(a)

 g = CustomGrid(
 test_obj_data,
 columns=["_numbered", "group_name", "options", "non-existant"],
 context={"x": "context var", "y": 99},
)
 return g

Resulting rendering:

[image: _images/custom_grid.png]

Controlling which columns allow sorting the data

It may be desired to exclude some or all columns from generation sorting
urls (used by subclasses that are sorting aware). You can use grids
exclude_ordering property to pass list of columns that should not support
sorting. By default sorting is disabled - this exclude_ordering contains
every column name:

grid = CustomGrid(itemlist, ['_numbered','part_name', 'part_no'],
 order_column='options', order_direction='asc',
 request=requestObj)
#enable ordering support
grid.exclude_ordering = []

Since grid is framework agnostic the url generator is not working out-of-the-box,
you will need to subclass grid object and override a special method called
generate_header_link implementing ordering there.

Whole operation consists of setting self.order_column and self.order_dir to
their CURRENT values,and generating new urls passed as labels for state
that header should set set after its clicked.:

Example implementation for pyramid app (but flask/pylons/django should be the
same with the exception of handling of request object implementation/url generator):

from webhelpers2.html.builder import HTML

class CustomGrid(Grid):
 """
 Subclass of Grid that can handle header link generation for quick building
 of tables that support ordering of their contents, paginated results etc.
 """

 def generate_header_link(self, column_number, column, label_text):
 """ This handles generation of link and then decides to call
 self.default_header_ordered_column_format
 or
 self.default_header_column_format
 based on if current column is the one that is used for sorting or not
 """

 # implementation START #
 # this will handle possible URL generation
 GET_copy = self.request.copy().GET.mixed()

 self.order_column = GET_copy.pop("order_col", None)
 self.order_dir = GET_copy.pop("order_dir", None)

 if column == self.order_column and self.order_dir == "asc":
 new_order_dir = "dsc"
 else:
 new_order_dir = "asc"

 GET_copy['order_col'] = column
 GET_copy['order_dir'] = new_order_dir

 url = self.request.current_route_url(_query=GET_copy)

 label_text = HTML.tag("a", href=url, c=label_text)
 # implementation END #
 # Is the current column the one we're ordering on?
 if column == self.order_column:
 return self.default_header_ordered_column_format(column_number,
 column,
 label_text)
 else:
 return self.default_header_column_format(column_number, column,
 label_text)

Resulting rendering:

[image: _images/grid_with_clickable_order_column.png]

Working with other item types

The module also includes ListGrid where the difference between default grid
is how default column format function handles data fetching from objects. It
is a good example how quickly and easy one can customize all aspects of grid behavior.

Order markers

Ordered columns by default include marker spans that you can easly stylize using
CSS to contain arrows or images showing order direction.

Example:

<style type="text/css">
 table .header .asc .marker:before {
 content: '\25b2' /* up arrow code */
 }

 table .header .dsc .marker:before {
 content: '\25be'; /* down arrow code */
 }
</style>

Customizing row markup

You can customize the grids look and behavior by overloading grids instance
render functions, bu subclassing and reimplementing those functions you can
output ul/div or any other markup you desire:

grid.default_column_format (self, column_number, i, record, column_name)
by default generates markup like:

<td class="cNO">VALUE</td>

	grid.default_header_column_format (self, column_number, column_name,

	header_label)

by default generates markup like:

<td class="cNO COLUMN_NAME">VALUE</td>

	grid.default_header_ordered_column_format (self, column_number, order,

	column_name, header_label):

Used by grids that support ordering of columns in the grid like,
webhelpers.pylonslib.grid.GridPylons.
by default generates markup like:

<td class="cNO ordering ORDER_DIRECTION COLUMN_NAME">LABEL</td>

grid.default_header_record_format (self, headers)
by default generates markup like:

<tr class="header">HEADERS_MARKUP</tr>

grid.default_record_format (self, i, record, columns)
Make an HTML table from a list of objects, and soon a list of
sequences, a list of dicts, and a single dict.:

<tr class="ODD_OR_EVEN">RECORD_MARKUP</tr>

grid.generate_header_link (self, column_number, column, label_text)
by default just sets the order direction and column properties for grid.

Actual link generation is handled by subclasses of Grid.

grid.numbered_column_format (self, column_number, i, record)
by default generates markup like:

<td class="cNO">RECORD_NO</td>

API

Index

Changelog

2018-09- version 0.9

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to webhelpers2_grid’s documentation!

 		
 Basic Usage

 		
 What grid is about?

 		
 Basic Example

 		
 Item number column

 		
 Basic template output

 		
 Customizing column names

 		
 Fetching the data from row/Customizing column cell markup

 		
 Controlling which columns allow sorting the data

 		
 Working with other item types

 		
 Order markers

 		
 Customizing row markup

 		
 API

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/grid_with_clickable_order_column.png
1 foo bar

2 bar2
3 foo3 bar3
4 food bard

_static/ajax-loader.gif

_images/basic_grid.png
foo3
food
obj foo

obj None
obj foo3
obj food

_images/custom_grid.png
obj foo

obj None
obj foo3
obj food

